400-803-8660 Mon. - Fri. 10:00-22:00

数据分析|一看就能会的九种数据分析方法|矩阵分析法

数据分析|一看就能会的九种数据分析方法|矩阵分析法




矩阵分析法,是在各路数据分析文章中,出现频率最高的词,它的最大优势,在于直观易懂


文章来源|码工小熊

作者|小熊妹


今天继续分享九大数据分析方法系列:矩阵分析法。矩阵分析法是在各路数据分析文章中,出现频率最高的词。甚至有不懂行的小白把它捧到“核心思维”,“底层逻辑”的高度。哈哈,才没有那么神呢。



01
矩阵分析法是干什么的?


数据分析领域,有一个简单,但非常致命的核心问题:“到底指标是多少,才算好?”为了这个问题,公司里经常吵成一团。矩阵分析法就是试图解决这个问题。它的逻辑非常简单:比平均值高,就算好!


很多小伙伴会惊呼:这也太简单粗暴了!


可是,如果大家仔细想想,用平均值非常合理:

  • 理解上简单:中位数、众数、四分位数,都太抽象了,不细想都不知道是啥

  • 计算上方便:AVERAGE函数是所有开发工具标配,太好用了。

  • 使用时方便:比如销售人均产值1万,那100万业绩,招100个人就够啦!


相比之下,告诉你销售团队的中位数/众数是1万,问需要多少人能做出100业绩?根本回答不了。所以平均值就是好用!



02
如何构造一个矩阵?


既然用平均值就可以了,为什么还要做矩阵呢?因为单纯靠一个指标,不能充分评价好坏。比如考核销售,如果只考核销售业绩。那销售们很可能倾向于卖利润很低的引流型产品。那种利润高,价格高,不容易卖的利润型产品,就没人卖了。最后销售卖越多,公司支付给销售提成越多,公司利润反而下降了!


此时就需要引入两个指标来考核:

  • 销售业绩

  • 销售利润


这样两个指标交叉,就有四种情况和对应的建议(如下图)。



如果把两个指标一纵一横的放,就构成了一个矩阵(如下图)。



这样矩阵就画好啦!矩阵分析法的最大优势,在于直观易懂。可以很容易从两个指标的交叉对比中发现问题。特别是当这两个指标是投入/成本指标的时候,成本高+收入低,成本低+收入与高两个类别,能直接为业务指示出改进方向,因此极大避免了“不知道如何评价好坏”的问题。


很多咨询公司都喜欢用这种方法,类似KANO模型或者波士顿矩阵,本质就是找到了两个很好的评价指标,通过两指标交叉构造矩阵,对业务分类。分类的区分效果很好,就广为流传了(如下图)。



了解了原理以后,我们可以自己动手做一个矩阵哦,构造矩阵是很简单的事,只要找两个评价指标,之后各自取均值,就能进行分类了。



03
矩阵分析法简单例子


举个简单的例子,一个销售团队,10名销售一个月内开发的客户数量,产生的总业绩如下图所示。用矩阵分析法的话:

  • 第一步:先对客户数量、业绩求平均值

  • 第二步:利用平均值,对每个销售人员的客户数量、业绩进行分类

  • 第三步:区分出多客户+高业绩,少客户+高业绩,多客户+低业绩,少客户+低业绩四类


这样就完成分类啦。



而且,还能对这四类起四个好听的名字,比如:

  • 多客户+高业绩:均衡型(或者叫:两手都抓型)

  • 多客户+少业绩:摆小摊型,像摆小摊一样,虽然人多,但是挣不到几个钱

  • 少客户+高业绩:吃大户型,抓住几个大户猛吃……

  • 少客户+少业绩:待发展型(或者叫:哪头都不行……)


用散点图,能直观的标识出这种分布:



后续,还能类似波士顿矩阵一样,比如建议吃大户型,不许歧视散客,增加客户数量。或者建议摆小摊型提升识别高价值用户能力等等。



04
矩阵分析法应用范围


两个场景,是不适合用矩阵分析法的。


其一:有极大/极小值影响了平均值的时候。比如下图,看似销售们平均业绩是100 但是头部的3个高手,业绩占了57%,其他17个人都是陪衬。


此时,矩阵分析法的基础:平均值,已经不具有区分能力。也不能简单地认为:20个人能做100万,那40个人就能做200万。想做到200万,需要再找到几个高手,而不是一帮咸鱼。一般出现极大/极小值的时候,可以用:分层分析法。



其二:两个指标高度相关的时候。比如下图,用户消费金额与消费频次,两个指标天生高度相关。此时可以用散点图,强行做矩阵,但是会发现左上,右下两个区域几乎没有数据,所有的点,都集中在一条线上。


此时矩阵分析法的业务解读能力接近0,因此不适用了。一般出现高度相关的时候,需要用:相关分析法



以上就是本篇关于「矩阵分析法」的内容啦,希望对您有所启发。后续会继续更新:分层分析法与相关分析法,敬请期待哦~


如果文章对您有帮助,请动动手指,分享、收藏、点赞、在看,有什么其他问题或想法,也欢迎下方评论区留言,我们会及时为您解答,一起讨论~


END


数据分析
/
往期推荐

用户增长到底是什么?和数据分析有啥关系?

一看就能会的九种数据分析方法|周期分析

“找标准”,愁死了多少数据分析师?五个方法,破解数据分析核心难题!

直接套用!互联网都在用的五类数据分析指标,拿来吧你!





扫描下方二维码,进入【九枝兰广告营销交流群】~

👇👇👇

IMG_7688.JPG

「九枝兰广告营销交流群」致力于为各位优化师、营销人提供一个广告优化、市场营销的话题讨论平台,大家扫描下方二维码即可进群,也欢迎大家添加阿潘微信邀请新朋友进群,我们将提供:
       

1、5大搜索平台资料;2、49个信息流平台资料;3、8大平台工具使用手册;4、信息流广告账户优化方法论;5、各行业报告、营销案例、白皮书;6、60个用户人群分析报告;7、100+广告创意素材文案;8、15个信息流平台大盘数据;9、最新文章、最新活动;10、异业合作。
       

等等~


 

扫描下方二维码,注册成为九枝兰用户「预约产品演示」

👇👇👇

默认标题_横版二维码_2021-08-13-0 (1).png


 

更多详情,可扫描下方二维码,添加九枝兰-阿潘进行咨询~

👇👇👇

未命名_自定义px_2021-09-09+18_11_43.png