400-803-8660 Mon. - Fri. 10:00-22:00

九枝兰专访GrowingIO创始人张溪梦:如何利用数据分析实现营销的指数级增长

九枝兰专访GrowingIO创始人张溪梦:如何利用数据分析实现营销的指数级增长

他将LinkedIn 的Business Analytics由独自一人做到近90人的部门;他的数据分析部门支撑整个公司的Sales、Marketing、Monetization、Operations,是LinkedIn业务实现黑客增长最强大的后盾。2015年,他放弃国外优越的平台,毅然回国创业。他就是数据分析大拿张溪梦 Simon Zhang。Simon平时非常忙,九枝兰从2个月前就开始预约,直到今日才约到此篇专访,不过干货满满,等待是值得的。

9A2F.tmp

5D39.tmp

C377.tmp

九枝兰: B2B企业和B2C企业的在线营销策略有何不同,如何利用数据分析迅速达成目标?

张溪梦:会分别有不同的策略,配备不同的团队,匹配不同的执行方法。因为Linkedln既有B端的企业级用户,也有C端个人用户,我们就以它为例来具体剖析:

27FF.tmp

Linkedln的C端用户有4亿多,市场策略以新用户的获取和提高老用户的活跃度为核心。关于如何获取新客,我会在后面的内容具体展开。这里主要研究如何提高活跃度,这个目标可以分解为:

如何让用户频繁使用Linkedln的网站、如何让他更新自己的简历、如何让他发更多的内容、如何让他天天读更多的内容,如何能在上面发更多消息,如何让他交更多的朋友认识更多的人,如何能在上面和自己的同事进行交流等等。这些就是市场部门的目标。

我们可以通过做各种数据分析模型,来帮助营销团队迅速达成这些目标。

举个简单的例子,比如数据库里4亿的个人用户,我们预测下周有多少人会更新他的简历?方法如下:

假设这个人看过一个工作,那他更新简历的可能性,就比一个从来没有看过任何新工作、新职位的人高很多;如果他的公司被IBM收购了,那么这家公司所有的员工,理论上来说就开始更新自己的简历了。就是这些很微弱的信号,加起来以后就能对整个人群进行各种判断。我们再把挖出来的更新简历几率较大的这一波人,做一些定制化营销,比如发送一封电子邮件加速他们更新简历,这样的营销转化率要比对4亿人海量发送邮件增加好几倍。

Linkedln的B端大概有十几万家不同的企业级客户。做的营销也非常有意思,首先我们会判断每家公司对Linkedln来说,顾客生命价值(Customer Lifetime Value)是多少。

怎么预估顾客生命价值:美国有专门的公司数据库,数据库里面覆盖了上亿家公司,我们从库里抽样出来几百万家公司,通过数据来算出这些公司的营收范围,每家公司在Linkedln会花多少钱。

另外,我们还可以通过社交网络的算法,算出类似的组织架构的东西,找到企业的决策人。而找到决策人这个环节,也是缩短销售周期、提升转化率很重要的关键点。

下一步要做的,是把产品包装成商业故事讲给这些人听,给他一个购买你产品的强大理由。你需要讲一个令他信服的故事,让他在短期内认识到产品的价值。

另外我想强调的是,不同类型的客户需要听到不一样的故事,每个人都有他不同的属性,如果用同一个故事去说服所有人,效果往往比较差。而这个过程中也需要数据跟踪,并用结果动态调整策略。

最后,数据驱动的核心,第一要优化,第二要规模化,所以当故事在某些人群中获得不错的效果,我们会把故事复制给更多同类型的客户。(至于什么样的客户是同类型的客户,也需要数据分析来挖掘。)这样做,与竞争对手相比,你的转化率高好几倍,效率高好几倍,获客成本低好几倍。

九枝兰:预测这些人未来动向(比如更新简历)因素,也可以称之为用户分群的标签一般多少个?

张溪梦:在Linkedln的时候,有十万个因素,核心因素有八千多到九千多个。所以要求你的技术力量十分雄厚,能从十万个因素里面精准抽样。如果靠人力维护这些因素是非常难的。

九枝兰:数据分析又如何运用到获取新增用户的营销推广上?

张溪梦:新增用户也一样的,因为大部分老顾客是从以前的推广中沉淀下来的,你要做的是对历史上各种渠道进行分析、拆解,就能变成今天的推广方案。

F062.tmp

咱们举个例子,Linkedln去年在某网站上打一个广告,转化率是3%,另外还进行了电子邮件营销,转化率是5%,我们就会对各个渠道数据进行对比,作为今年选择渠道的参照物。今年是否还投放那个网站?或者投和那个网站同类型的其他网站?

数据分析有一个最妙的地方,就是你不用去知道所有的数据就能判断一个新的事物——通过对历史的数据学习,你就知道未来的趋势。

九枝兰专访张溪梦:数据分析在营销领域还有哪些应用?

九枝兰专访张溪梦:目前国内企业在数据分析方面的水平如何?应如何提高数据分析能力?